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1 Introduction
Let H be a real Hilbert space with inner product ⟨, ⟩
and induced norm ∥ · ∥. Let C be a nonempty closed
convex subset of H .

Let {Fk} be a countable family of bifunctions
from C ×C to R, where R is the set of real numbers.
Combettes and Hirstoaga [1] considered the follow-
ing system of equilibrium problems which is to find
x ∈ C such that:

Fk(x, y) ≥ 0, ∀k ∈ Γ and ∀y ∈ C, (1)

where Γ is an arbitrary index set. If Γ is a singleton,
then problem (1) becomes the following equilibrium
problem:

Finding x ∈ C such that F (x, y) ≥ 0,∀y ∈ C. (2)

The solution set of (2) is denoted by EP (F ).
A mapping S ofC is said to be a κ−strict pseudo-

contraction if there exists a constant κ ∈ [0, 1) such
that

∥Sx−Sy∥2 ≤ ∥x− y∥2+κ∥(I −S)x− (I −S)y∥2

for all x, y ∈ C; see [2]. We denote the set of fixed
points of S by F (S) i.e.,

F (S) = {x ∈ C : Sx = x}.

Note that the class of strict pseudo-contractions
strictly includes the class of nonexpansive mappings
which are mapping S on C such that

∥Sx− Sy∥ ≤ ∥x− y∥

for all x, y ∈ C. That is, S is nonexpansive if and
only if S is a 0−strict pseudo-contraction.

Numerous problems in physics, optimization and
economics reduce to finding a solution of the problem
(1). Some methods have been proposed to solve the
system of equilibrium problems. See, for instance, [3-
10].

In 2006, Marino and Xu [11] introduced the fol-
lowing general iterative method and proved that un-
der certain appropriate conditions, the algorithm con-
verges strongly. To be more precise, they proved the
following theorem.

Theorem 1 Let xn be generated by algorithm

xn+1 = (I − αnA)Txn + αnγf(xn)

with the sequence {αn} of parameters satisfying con-
ditions (C1)–(C3):

(C1) αn → 0;

(C2)
∞∑
n=0

αn = ∞;

(C3) either
∞∑
n=1

|αn+1 − αn| <∞ or lim
n→∞

αn+1

αn
= 1.

Then xn converges strongly to a fixed point x̃ of T
which solves the variational inequality:

⟨(A− γf)x̃, x̃− z⟩ ≤ 0,∀z ∈ Fix(T ) (3)

where T is a nonexpansive mapping, A is a strongly
positive bounded linear operator and f is a contrac-
tion.
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The variational inequality (3) is the optimality
condition for the minimization problem

min
x∈C

1

2
⟨Ax, x⟩ − h(x),

where h is a potential function for γf(x) (i.e., h
′
(x) =

γf(x) for x ∈ H).
In recent years, variational inequality problems

have been extended to study a large variety problems
arising in structural analysis, economics, engineering
sciences and so on, for example, see [3, 7, 12, 13] and
the references therein.

On the other hand, Yamada [14] proposed the fol-
lowing hybrid iterative method for solving the varia-
tional inequality

xn+1 = Txn − µλnF (Txn), n ≥ 0,

where F is k−Lipschitzian and η−strongly mono-
tone operator with k > 0, η > 0, 0 < µ < 2η/k2.
He proved that if λn satisfying appropriate condi-
tions, then {xn} generated by the above algorithm
converges strongly to the unique solution of varia-
tional inequality

⟨Fx̃, x− x̃⟩ ≥ 0, x ∈ Fix(T ).

Recently, Tian [15] revealed the interior connec-
tion of the Yamada’s algorithm and viscosity iterative
algorithm, then proposed a more general iterative al-
gorithm combining a L− Lipschitzian and η−strong
monotone operator. They obtained the following re-
sult in a real Hilbert space.

Theorem 2 Let xn be generated by algorithm

xn+1 = (I − αnµA)Txn + αnγf(xn)

with the sequence {αn} of parameters satisfying con-
ditions (C1)–(C3):

(C1) αn → 0;

(C2)
∞∑
n=0

αn = ∞;

(C3) either
∞∑
n=1

|αn+1 − αn| <∞ or lim
n→∞

αn+1

αn
= 1.

Then xn converges strongly to a fixed point x̃ of T
which solves the variational inequality:

⟨(µA− γf)x̃, x̃− z⟩ ≤ 0, ∀z ∈ Fix(T ).

More recent, He, Liu and Cho [6] considered an
explicit method for system of equilibrium problems
and infinite family nonexpansive mappings. They in-
troduced an explicit scheme as follows:

xn+1 = αnγf(xn)

+(I − αnA)WnT
FM
rM,n

T
FM−1
rM−1,n ...T

F2
r2,nT

F1
r1,nxn,

∀n ∈ N.

Under the appropriate conditions, the sequence {xn}
converges strongly to

x∗ ∈ F =
∞∩
i=1

F (Si)
∩ M∩

k=1

EP (Fk) ̸= ∅

which satisfies the variational inequality

⟨(A− γf)x∗, x− x∗⟩ ≥ 0, ∀x ∈ F,

where f is a contraction and A is a strongly positive
bounded linear operator.

In this paper, motivated and inspired by the above
facts, we introduce a new iterative scheme and obtain
strong convergence theorem for finding a common el-
ement of the set of fixed points of a infinite family of
strict pseudo-contractions and the set of solutions of
the system of equilibrium problems (1) by the general
iterative algorithm. Our results improve and extend
the corresponding results given by Wang [17], He [6],
Tian [15] and many others. Furthermore, we give an
example which support our main theorem in the last
section.

2 Preliminaries
Throughout this paper, the notations ⇀ denotes weak
convergence and → denotes strong convergence.

We at first introduce some lemmas that are used
in proofs of the main results later.

Lemma 3 Let H be a real Hilbert space. There hold
the following identities:
(i) ∥x−y∥2 = ∥x∥2−∥y∥2−2⟨x−y, y⟩,∀x, y ∈ H.
(ii) ∀t ∈ [0, 1],∀x, y ∈ H ,

∥tx+(1−t)y∥2 = t∥x∥2+(1−t)∥y∥2−t(1−t)∥x−y∥2.

Lemma 4 [16] Assume that {αn} is a sequence of
nonnegative real numbers such that

αn+1 ≤ (1− γn)αn + δn,

where {γn} is a sequence in (0, 1) and {δn} is a se-
quence such that

(i)
∞∑
n=1

γn = ∞ ;

(ii) lim sup
n→∞

δn
γn

≤ 0 or
∞∑
n=1

|δn| <∞.

WSEAS TRANSACTIONS on MATHEMATICS Peichao Duan, Jing Zhao

E-ISSN: 2224-2880 1138 Issue 12, Volume 11, December 2012



Then, lim
n→∞

αn = 0.

Recall that given a nonempty closed convex sub-
set C of a real Hilbert space H , for any x ∈ H , there
exists a unique nearest point in C, denoted by PCx,
such that

∥x− PCx∥ ≤ ∥x− y∥
for all y ∈ C. Such a PC is called the metric (or the
nearest point) projection of H onto C. As we know,
y = PCx if and only if there holds the relation:

⟨x− y, y − z⟩ ≥ 0 for all z ∈ C. (4)

Lemma 5 [17] Let A : H → H be a L-Lipschitzian
and η−strongly monotone operator on a Hilbert
space H with L > 0, η > 0, 0 < µ < 2η/L2 and
0 < t < 1. Then S = (I − tµA) : H → H is
a contraction with contractive coefficient 1 − tτ and
τ = 1

2µ(2η − µL2).

Lemma 6 [2] Let S : C → C be a κ−strict pseudo-
contraction. Define T : C → C by

Tx = λx+ (1− λ)Sx, ∀x ∈ C.

Then, as λ ∈ [κ, 1), T is a nonexpansive mapping
such that F (T ) = F (S).

Lemma 7 [15] Let H be a Hilbert space and f :
H → H be a contraction with coefficient 0 < ρ < 1,
and A : H → H an L−Lipschitzian continuous op-
erator and η−strongly monotone with L > 0, η > 0.
Then for 0 < γ < µη/ρ,

⟨x− y, (µA− γf)x− (µA− γf)y⟩
≥ (µη − γρ)∥x− y∥2, x, y ∈ H.

That is, µA−γf is strongly monotone with coefficient
µη − γρ.

Let {Sn} be a sequence of κn−strict pseudo-
contractions. Define S

′
n = θnI + (1 − θn)Sn, θn ∈

[κn, 1). Then, by Lemma 6, S
′
n is nonexpansive. In

this paper, we consider the mapping Wn defined by

Un,n+1 = I,

Un,n = tnS
′
nUn,n+1 + (1− tn)I,

Un,n−1 = tn−1S
′
n−1Un,n + (1− tn−1)I,

· · · ,
Un,i = tiS

′
iUn,i+1 + (1− ti)I,

· · · ,
Un,2 = t2S

′
2Un,3 + (1− t2)I,

Wn = Un,1 = t1S
′
1Un,2 + (1− t1)I,

(5)

where t1, t2, · · · are real numbers such that 0 ≤ tn <
1. Such a mapping Wn is called a W−mapping gen-
erated by S

′
1, S

′
2, · · · and t1, t2, · · ·. It is easy to see

Wn is nonexpansive.

Lemma 8 [18] Let C be a nonempty closed con-
vex subset of a strictly convex Banach space E, let
S

′
1, S

′
2, · · · be nonexpansive mappings of C into it-

self such that ∩∞
i=1F (S

′
i) ̸= ∅ and t1, t2, · · · be real

numbers such that 0 < ti ≤ b < 1, for every
i = 1, 2, · · · . Then, for any x ∈ C and k ∈ N , the
limit limn→∞ Un,kx exists.

Using Lemma 8, one can define the mapping W
from C into itself as follows:

Wx := lim
n→∞

Wnx = lim
n→∞

Un,1x, x ∈ C.

Lemma 9 [18] Let C be a nonempty closed con-
vex subset of a strictly convex Banach space E. Let
S

′
1, S

′
2, · · · be nonexpansive mappings of C into itself

such that ∩∞
i=1F (S

′
i) ̸= ∅ and t1, t2, · · · be real num-

bers such that 0 < ti ≤ b < 1,∀i ≥ 1. If K is any
bounded subset of C, then

lim
n→∞

sup
x∈K

∥Wx−Wnx∥ = 0.

Lemma 10 [19] Let C be a nonempty closed con-
vex subset of a Hilbert space H, {S′

i : C → C}
be a family of infinite nonexpansive mappings with
∩∞
i=1F (S

′
i) ̸= ∅, t1, t2, · · · be real numbers such that

0 < ti ≤ b < 1, for every i = 1, 2, · · · . Then
F (W ) = ∩∞

i=1F (S
′
i).

For solving the equilibrium problem, let us as-
sume that the bifunction F satisfies the following con-
ditions:

(A1) F (x, x) = 0, ∀x ∈ C;

(A2) F is monotone, i.e. F (x, y) + F (y, x) ≤ 0 for
any x, y ∈ C;

(A3) For each x, y, z ∈ C,

lim sup
t→0

F (tz + (1− t)x, y) ≤ F (x, y);

(A4) F (x, ·) is convex and lower semicontionuous for
each x ∈ C.

We recall some lemmas which will be needed in
the rest of this paper.

Lemma 11 [20] Let C be a nonempty closed convex
subset of H , let F be bifunction from C × C to R
satisfying (A1)-(A4) and let r > 0 and x ∈ H . Then
there exists z ∈ C such that

F (z, y) +
1

r
⟨y − z, z − x⟩ ≥ 0, ∀ y ∈ C.
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Lemma 12 [1] For r > 0, x ∈ H , define a mapping
Tr : H → C as follows:

Tr(x) = {z ∈ C|F (z, y)+1

r
⟨y−z, z−x⟩ ≥ 0, ∀y ∈ C}

for all x ∈ H . Then, the following statements hold:

(i) Tr is single-valued;

(ii) Tr is firmly nonexpansive, i.e., for any x, y ∈ H ,

∥Trx− Try∥2 ≤ ⟨Trx− Try, x− y⟩;

(iii) F (Tr) = EP (F );

(iv) EP (F ) is closed and convex.

Lemma 13 [21] Let C,H,F and Trx be as in
Lemma 11. Then the following holds:

∥Tsx− Ttx∥2 ≤
s− t

s
⟨Tsx− Ttx, Tsx− x⟩

for all s, t > 0 and x ∈ H .

Lemma 14 [22] Let {xn} and {zn} be bounded se-
quences in a Banach space and {βn} be a sequence
of real numbers such that 0 < lim infn→∞ βn ≤
lim supn→∞ βn < 1 for all n = 0, 1, 2, ... Suppose
that xn+1 = (1−βn)zn+βnxn for all n = 0, 1, 2, ...
and lim supn→∞ ∥zn+1 − zn∥ − ∥xn+1 − xn∥ ≤ 0.
Then limn→∞ ∥zn − xn∥ = 0.

Lemma 15 [17] LetH be a Hilbert space andC be a
nonempty closed convex subset of H , and T : C → C
a nonexpansive mapping with F (T ) ̸= ∅. If {xn} is
a sequence in C weakly converging to x and if {(I −
T )xn} converges strongly to y, then (I − T )x = y.

3 Main result and its proof
The rest of this paper, we always assume that f is a
contraction mapping from H into itself with coeffi-
cient ρ ∈ (0, 1), and A is a L− Lipschitzian contin-
uous operator and η−strongly monotone on H with
L > 0, η > 0. Assume that 0 < µ < 2η/L2 and

0 < γ < µ(η − µL2

2
)/ρ = τ/ρ.

Denote
Θk
n = TFk

rk,n
· · ·TF2

r2,nT
F1
r1,n

for every k ∈ {1, 2, . . . ,M} and Θ0
n = I for all n ∈

N . Define a mapping

Vn = βnI + (1− βn)WnΘ
M
n .

Since both Wn and TFk
rk,n

are nonexpansive, it is easy
to check that Vn is also nonexpansive. Consider the
following mapping Gn on H defined by

Gnx = αnγf(x) + (I − αnµA)Vnx,

for all x ∈ H , n ∈ N, where αn ∈ (0, 1). By Lemma
3 (ii), Lemma 5 and Lemma 12, we have

∥Gnx−Gny∥
≤ αnγ∥f(x)− f(y)∥+ (1− αnτ)∥Vnx− Vny∥)
≤ αnγρ∥x− y∥+ (1− αnτ)∥x− y∥
= (1− αn(τ − γρ))∥x− y∥.

Since 0 < 1 − αn(τ − γρ) < 1, it follows that Gn
is a contraction mapping. By the Banach contraction
principle, Gn has a unique fixed pointed xfn ∈ H such
that

xfn = αnγf(x
f
n) + (I − αnµA)Vnx

f
n.

For simplicity, we will write xn for xfn provided
without confusion. Next we prove the sequences {xn}
converges strongly to a point

x∗ ∈ Ω = ∩∞
i=1F (Si) ∩ ∩Mk=1EP (Fk)

which solves the variational inequality

⟨(γf − µA)x∗, p− x∗⟩ ≤ 0, ∀p ∈ Ω. (6)

Equivalently, x∗ = PΩ(I − µA+ γf)x∗.

Theorem 16 Let C be a nonempty closed convex
subset of a real Hilbert space H and let Fk, k ∈
{1, 2, ...M}, be bifunctions from C × C to R which
satisfies conditions (A1)–(A4). Let Si : C → C
be a family κi−strict pseudo-contractions for some
0 ≤ κi < 1. Assume the set Ω = ∩∞

i=1F (Si) ∩
∩Mk=1EP (Fk) ̸= ∅. Let f be a contraction mapping
on H with ρ ∈ (0, 1) and let A be a L−Lipschitzian
continuous operator and η−strongly monotone with
L > 0, η > 0, 0 < µ < 2η/L2 and 0 < γ <

µ(η− µL2

2 )/ρ = τ/ρ. For every n ∈ N , letWn be the
mapping generated by S

′
i and 0 < ti ≤ b < 1. Given

x1 ∈ H , let {xn} and {un} be sequences generated
by the following algorithm:

un = TFM
rM,n

T
FM−1
rM−1,n ...T

F2
r2,nT

F1
r1,nxn,

yn = βnxn + (1− βn)Wnun,

xn+1 = αnγf(xn) + (I − µαnA)yn,

(7)

where {αn}, {βn} and {rk,n} satisfy the following
conditions:
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(i) {αn} ⊂ (0, 1), lim
n→∞

αn = 0 and
∞∑
n=1

αn = ∞;

(ii) 0 ≤ lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1;

(iii) {rk,n} ⊂ (0,∞), lim inf
n→∞

rk,n > 0 and
lim
n→∞

|rk,n+1 − rk,n| = 0 for k ∈ {1, 2, ...M}.

Then, {xn} converges strongly to x∗ ∈ Ω, which
solves the variational inequality (6).

Proof: The proof is divided into several steps.

Step 1. {xn} is bounded.

Take p ∈ Ω, since for each k ∈ {1, 2, . . . ,M},
TFk
rk,n

is nonexpansive, p = TFk
rk,n

p and un = ΘM
n xn,

we have

∥un − p∥ = ∥ΘM
n xn −ΘM

n p∥ ≤ ∥xn − p∥ (8)

for all n ∈ N .
SinceWn is nonexpansive, by Lemma 10 and (8),

we get

∥yn − p∥ ≤ βn∥xn − p∥+ (1− βn)∥Wnun − p∥
≤ ∥xn − p∥.

(9)
Take any p ∈ Ω, from (9), we have

∥xn+1 − p∥
= ∥αnγf(xn) + (I − µαnA)yn − p∥
≤ ∥αn(γf(xn)− µAp)∥
+∥(I − µαnA)yn − (I − µαnA)p∥
≤ αn(∥γf(xn)− γf(p)∥+ ∥γf(p)− µAp)∥)
+(1− αnτ)∥yn − p∥
≤ αnργ∥xn − p∥+ αn∥γf(p)− µAp)∥
+(1− αnτ)∥un − p∥
= (1− αn(τ − ργ))∥xn − p∥
+αn(τ − ργ)∥γf(p)−µAp)∥τ−ργ
≤ max{∥xn − p∥, ∥γf(p)−µAp)∥τ−ργ }.

By induction, we obtain

∥xn−p∥ ≤ max{∥x1−p∥,
∥γf(p)− µAp)∥

τ − ργ
}, n ≥ 1.

Hence, {xn} is bounded, so are {un} and {yn}. It fol-
lows from the Lipschitz continuity of A that {Axn}
and {Aun} are also bounded. From the nonexpansiv-
ity of f and Wn, it follows that {f(xn)} and {Wnxn}
are also bounded.

Step 2.
lim
n→∞

∥xn+1 − xn∥ = 0. (10)

and

lim
n→∞

∥un+1 − un∥ = 0. (11)

Observe that

∥un+1 − un∥
= ∥ΘM

n+1xn+1 −ΘM
n xn∥

≤ ∥ΘM
n+1xn+1 −ΘM

n+1xn∥+ ∥ΘM
n+1xn −ΘM

n xn∥
≤ ∥xn+1 − xn∥+ ∥ΘM

n+1xn −ΘM
n xn∥

≤ ∥xn+1 − xn∥
+∥TFM

rM,n+1
ΘM−1
n+1 xn − TFM

rM,n
ΘM−1
n+1 xn∥

+∥TFM
rM,n

ΘM−1
n+1 xn − TFM

rM,n
T
FM−1
rM−1,nΘ

M−2
n+1 xn∥+ · · ·

+∥TFM
rM,n

T
FM−1
rM−1,n ...Θ

2
n+1xn − TFM

rM,n
...TF2

r2,nT
F1
r1,n+1

xn∥
+∥TFM

rM,n
...TF2

r2,nT
F1
r1,n+1

xn − un∥
≤ ∥xn+1 − xn∥
+∥TFM

rM,n+1
ΘM−1
n+1 xn − TFM

rM,n
ΘM−1
n+1 xn∥

+∥ΘM−1
n+1 xn − T

FM−1
rM−1,nΘ

M−2
n+1 xn∥+ · · ·

+∥TF2
r2,n+1

TF1
r1,n+1

xn − TF2
r2,nT

F1
r1,n+1

xn∥
+∥TF1

r1,n+1
xn − TF1

r1,nxn∥.
(12)

From (5), we have

∥Wn+1un −Wnun∥
= ∥t1S

′
1Un+1,2un − t1S

′
1Un,2un∥

≤ t1∥Un+1,2un − Un,2un∥
= t1∥t2S

′
2Un+1,3un − t2S

′
2Un,3un∥

≤ t1t2∥Un+1,3un − Un,3un∥
≤ · · ·
≤
∏n
i=1 ti∥Un+1,n+1un − Un,n+1un∥

≤M1
∏n
i=1 ti,

(13)

where M1 = supn{∥Un+1,n+1un − Un,n+1un∥}.
Suppose xn+1 = βnxn + (1− βn)zn, then

zn = xn+1−βnxn
1−βn

= αnγf(xn)+(I−µαnA)yn−βnxn
1−βn .

Hence, we have

zn+1 − zn

= αn+1γf(xn+1)+(I−µαn+1A)yn+1−βn+1xn+1

1−βn+1

−αnγf(xn)+(I−µαnA)yn−βnxn
1−βn

= αn+1(γf(xn+1)−µAyn+1)
1−βn+1

+ yn+1−βn+1xn+1

1−βn+1

−αn(γf(xn)−µAyn)
1−βn − yn−βnxn

1−βn
= αn+1(γf(xn+1)−µAyn+1)

1−βn+1

+βn+1xn+1+(1−βn+1)Wn+1un+1−βn+1xn+1

1−βn+1

−αn(γf(xn)−µAyn)
1−βn − βnxn+(1−βn)Wnun−βnxn

1−βn

WSEAS TRANSACTIONS on MATHEMATICS Peichao Duan, Jing Zhao

E-ISSN: 2224-2880 1141 Issue 12, Volume 11, December 2012



It follows from (12), (13) and the above result that

∥zn+1 − zn∥
≤ αn+1

1−βn+1
(∥γf(xn+1)∥+ ∥µAyn+1∥)

+ αn
1−βn (∥γf(xn)∥+ ∥µAyn∥)

+∥Wn+1un+1 −Wnun∥
≤ ( αn+1

1−βn+1
+ αn

1−βn )M2 + ∥Wn+1un+1 −Wn+1un∥
+∥Wn+1un −Wnun∥

≤ ( αn+1

1−βn+1
+ αn

1−βn )M2 + ∥un+1 − un∥
+∥Wn+1un −Wnun∥

≤ ∥xn+1 − xn∥+ ( αn+1

1−βn+1
+ αn

1−βn )M2

+M1
∏n
i=1 ti

+∥TFM
rM,n+1

ΘM−1
n+1 xn − TFM

rM,n
ΘM−1
n+1 xn∥

+∥ΘM−1
n+1 xn − T

FM−1
rM−1,nΘ

M−2
n+1 xn∥+ · · ·

+∥TF2
r2,n+1

TF1
r1,n+1

xn − TF2
r2,nT

F1
r1,n+1

xn∥
+∥TF1

r1,n+1
xn − TF1

r1,nxn∥.

Let M2 = supn{∥γf(xn)∥+ ∥µAyn∥}. We have

∥zn+1 − zn∥ − ∥xn+1 − xn∥
≤ ∥TFM

rM,n+1
ΘM−1
n+1 xn − TFM

rM,n
ΘM−1
n+1 xn∥

+∥ΘM−1
n+1 xn − T

FM−1
rM−1,n ...T

F2
r2,n+1

TF1
r1,n+1

xn∥
+ · · ·
+∥TF2

r2,n+1
TF1
r1,n+1

xn − TF2
r2,nT

F1
r1,n+1

xn∥
+∥TF1

r1,n+1
xn − TF1

r1,nxn∥
+( αn+1

1−βn+1
+ αn

1−βn )M2 +M1
∏n
i=1 ti.

From condition (i), (iii), 0 < tn ≤ b < 1, and Lemma
13, we obtain

lim sup
n→∞

(∥zn+1 − zn∥ − ∥xn+1 − xn∥) ≤ 0.

By Lemma 14, we have limn→∞ ∥zn−xn∥ = 0. Thus

lim
n→∞

∥xn+1 − xn∥ = lim
n→∞

(1− βn)∥zn − xn∥ = 0.

By Lemma 13, (10) and (12), we obtain

∥un+1 − un∥ → 0.

Step 3.
∥xn −Wxn∥ → 0. (14)

Observe that

∥xn −Wnxn∥ ≤ ∥xn −Wnun∥+ ∥Wnun −Wnxn∥
≤ ∥xn −Wnun∥+ ∥un − xn∥,

and

∥xn −Wnun∥
≤ ∥xn − xn+1∥+ ∥xn+1 − yn∥+ ∥yn −Wnun∥
= ∥xn − xn+1∥+ ∥xn+1 − yn∥
+βn(∥un − xn∥+ ∥xn −Wnun∥).

From condition (i) and (20), we obtain

(1− βn)∥xn −Wnun∥
≤ ∥xn − xn+1∥+ ∥xn+1 − yn∥+ βn∥un − xn∥
≤ ∥xn − xn+1∥+ αn∥γf(xn)− µAyn∥+
βn∥un − xn∥.

In order to prove that ∥un − xn∥ → 0, we will show
that

∥Θk
nxn −Θk−1

n xn∥ → 0, k ∈ {1, 2, · · · ,M}. (15)

Indeed, for p ∈ Ω, it follows from the firmly non-
expansivity of TFk

rk,n
that for each k ∈ {1, 2, · · · ,M},

we have

∥Θk
nxn − p∥2 = ∥TFk

rk,n
Θk−1
n xn − TFk

rk,n
p∥2

≤ ⟨Θk
nxn − p,Θk−1

n xn − p⟩
= 1

2(∥Θ
k
nxn − p∥2 + ∥Θk−1

n xn − p∥2
−∥Θk

nxn −Θk−1
n xn∥2).

Thus we get

∥Θk
nxn − p∥2

≤ ∥Θk−1
n xn − p∥2 − ∥Θk

nxn −Θk−1
n xn∥2,

k = 1, 2, . . . ,M,

which implies that for each k ∈ {1, 2, . . . ,M},

∥Θk
nxn − p∥2

≤ ∥Θ0
nxn − p∥2 − ∥Θk

nxn −Θk−1
n xn∥2

−∥Θk−1
n xn −Θk−2

n xn∥2 − · · ·
−∥Θ2

nxn −Θ1
nxn∥2 − ∥Θ1

nxn −Θ0
nxn∥2

≤ ∥xn − p∥2 − ∥Θk
nxn −Θk−1

n xn∥2.

Therefore, by the convexity of ∥ · ∥2 and Lemma 12,
we get

∥yn − p∥2
≤ βn∥xn − p∥2 + (1− βn)∥un − p∥2
≤ βn∥xn − p∥2 + (1− βn)∥Θk

nxn − p∥2
≤ ∥xn − p∥2 − (1− βn)∥Θk

nxn −Θk−1
n xn∥2.

Further we have

∥xn+1 − p∥2
≤ αn∥γf(xn)− µAp∥2 + (1− αnτ)∥yn − p∥2
≤ αn∥γf(xn)− µAp∥2 + (1− αnτ)(∥xn − p∥2
−(1− βn)∥Θk

nxn −Θk−1
n xn∥2)

≤ αn∥γf(xn)− µAp∥2 + ∥xn − p∥2
−(1− βn)∥Θk

nxn −Θk−1
n xn∥2.

It follows that

(1− βn)∥Θk
nxn −Θk−1

n xn∥2
≤ αn∥γf(xn)− µAp∥2 + ∥xn − p∥2
−∥xn+1 − p∥2

≤ αn∥γf(xn)− µAp∥2
+∥xn − xn+1∥(∥xn − p∥+ ∥xn+1 − p∥).
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From condition (i), (ii), we get from (10) that (15)
holds. Thus we have

∥un − xn∥
≤ ∥un −ΘM−1

n xn∥+ ∥ΘM−1
n xn −ΘM−2

n xn∥
+ · · ·+ ∥Θ1

nxn − xn∥ → 0.
(16)

Furthermore we have ∥xn−Wnun∥ → 0. So we have

∥xn −Wnxn∥ → 0. (17)

On the other hand, we have

∥xn −Wxn∥
≤ ∥xn −Wnxn∥+ ∥Wnxn −Wxn∥
≤ ∥xn −Wnxn∥+ supxn∈C ∥Wnxn −Wxn∥.

Combining (17), the last inequality and Lemma 9, we
obtain (14).

Step 4.

lim sup
n→∞

⟨(γf − µA)x∗, xn − x∗⟩ ≤ 0, (18)

where x∗ = PΩ(I − µA+ γf)x∗ is a unique solution
of the variational inequality (6).

Indeed, we can take a subsequence {xnj} of {xn}
such that

lim sup
n→∞

⟨(γf − µA)x∗, xn − x∗⟩
= lim

j→∞
⟨(γf − µA)x∗, xnj − x∗⟩.

Since {xnj} is bounded, there exists a subsequence
{xnjk

} of {xnj} which converges weakly to q. With-
out loss of generality, we can assume xnj ⇀ q. From
(14), we obtain Wxnj ⇀ q.

Next we will show that q ∈ Ω. By Lemma 6,
Lemma 10 and Lemma 15, we have q ∈ F (W ) =

∩∞
i=1F (S

′
i) = ∩∞

i=1F (Si).
We need to show that q ∈ ∩Mi=1EP (Fk). By

Lemma 11, we have that for each k = 1, 2, . . . ,M,

Fk(Θ
k
nxn, y) +

1
rk,n

⟨y −Θk
nxn,Θ

k
nxn −Θk−1

n xn⟩
≥ 0,∀y ∈ C.

From (A2), we get

1
rk,n

⟨y −Θk
nxn,Θ

k
nxn −Θk−1

n xn⟩ ≥ Fk(y,Θ
k
nxn),

∀y ∈ C.

Hence,

⟨y −Θk
nj
xnj ,

Θk
nj
xnj−Θk−1

nj
xnj

rk,nj
⟩ ≥ Fk(y,Θ

k
nj
xnj ),

∀y ∈ C.

From (15), we obtain that

Θk
nj
xnj ⇀ q, as j → ∞

for each k = 1, 2, . . . ,M (especially, unj = ΘM
nj
xnj ).

Together with (15) and (A4) we have, for each k =
1, 2, . . . ,M, that

0 ≥ Fk(y, q), ∀y ∈ C.

Now, for any 0 < t ≤ 1 and y ∈ C, let yt =
ty+ (1− t)q. Since y ∈ C and q ∈ C, we obtain that
yt ∈ C and hence Fk(yt, q) ≤ 0. So, we have

0 = Fk(yt, yt) ≤ tFk(yt, y) + (1− t)Fk(yt, q)
≤ tFk(yt, y).

Dividing by t, we get, for each k = 1, 2, . . . ,M, that

Fk(yt, y) ≥ 0, ∀y ∈ C.

Letting t→ 0 and from (A3), we get

Fk(q, y) ≥ 0. ∀y ∈ C and q ∈ EP (Fk)

for each k = 1, 2, . . . ,M, i.e., q ∈ ∩Mk=1EP (Fk).
Therefore, we have q ∈ Ω.

Since x∗ = PΩ(I − µA+ γf)x∗, it follows that

lim sup
n→∞

⟨(γf − µA)x∗, xn − x∗⟩
= lim

j→∞
⟨(γf − µA)x∗, xnj − x∗⟩

= ⟨(γf − µA)x∗, q − x∗⟩ ≤ 0.

Step 5.
xn → x∗. (19)

Since
⟨(γf − µA)x∗, xn+1 − x∗⟩
= ⟨(γf − µA)x∗, xn+1 − xn⟩
+⟨(γf − µA)x∗, xn − x∗⟩

≤ ∥(γf − µA)x∗∥∥xn+1 − xn∥
+⟨(γf − µA)x∗, xn − x∗⟩.

It follows from (10) and (18) that

lim sup
n→∞

⟨(γf − µA)x∗, xn+1 − x∗⟩ ≤ 0.

Thus we get

∥xn+1 − x∗∥2
= ∥αnγf(xn) + (I − µαnA)yn − x∗∥2
= ∥(I − µαnA)yn − (I − µαnA)x

∗

+αn(γf(xn)− µAx∗)∥2
≤ ∥(I − µαnA)yn − (I − µαnA)x

∗∥2
+2αn⟨γf(xn)− µAx∗, xn+1 − x∗⟩

≤ (1− αnτ)
2∥yn − x∗∥2

+2αn⟨γf(xn)− γf(x∗), xn+1 − x∗⟩+
2αn⟨(γf − µA)x∗, xn+1 − x∗⟩

≤ (1− αnτ)
2∥xn − x∗∥2

+αnργ(∥xn − x∗∥2 + ∥xn+1 − x∗∥2)
+2αn⟨(γf − µA)x∗, xn+1 − x∗⟩.
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This implies that

∥xn+1 − x∗∥2

≤ (1−αnτ)2+αnργ
1−αnργ

∥xn − x∗∥2

+ 2αn
1−αnργ

⟨(γf − µA)x∗, xn+1 − x∗⟩
≤ (1− 2αn(τ−ργ)

1−αnργ
)∥xn − x∗∥2

+ 2αn
1−αnργ

⟨(γf − µA)x∗, xn+1 − x∗⟩+
(αnτ)2

1−αnργ
M3,

where M3 = supn ∥xn − x∗∥2, n ≥ 1. It is easily to
see that γn = 2αn(τ−ργ)

1−αnργ
. Hence by Lemma 4, the

sequence {xn} converges strongly to x∗.
Putting βn ≡ 0 in Theorem 16, we can draw the

desired conclusion immediately.

Corollary 17 Let C be a nonempty closed convex
subset of a real Hilbert space H and let Fk, k ∈
{1, 2, ...M}, be bifunctions from C × C to R which
satisfies conditions (A1)-(A4). Let Si : C → C
be a family κi−strict pseudo-contractions for some
0 ≤ κi < 1. Assume the set Ω = ∩∞

i=1F (Si) ∩
∩Mk=1EP (Fk) ̸= ∅. Let f be a contraction of H into
itself with ρ ∈ (0, 1) and let A be a L−Lipschitzian
continuous operator and η−strongly monotone with
L > 0, η > 0, 0 < µ < 2η/L2 and 0 < γ <

µ(η− µL2

2 )/ρ = τ/ρ. For every n ∈ N , letWn be the
mapping generated by S

′
i and 0 < ti ≤ b < 1. Given

x1 ∈ H , let {xn} and {un} be sequences generated
by the following algorithm:{

un = TFM
rM,n

T
FM−1
rM−1,n ...T

F2
r2,nT

F1
r1,nxn,

xn+1 = αnγf(xn) + (I − µαnA)Wnun,
(20)

where {αn} and {rk,n} satisfy the following condi-
tions:

(i) {αn} ⊂ (0, 1), limn→∞ αn = 0 and∑∞
n=1 αn = ∞;

(ii) {rk,n} ⊂ (0,∞), lim infn→∞ rk,n > 0 and
limn→∞ |rk,n+1−rk,n| = 0 for k ∈ {1, 2, ...M}.

Then, {xn} converge strongly to x∗ ∈ Ω, which solves
the variational inequality (6).

Remark 18 If Fk ≡ 0, k ∈ {1, 2, . . . ,M}, then The-
orem 16 reduces to Theorem 3.1 of Wang [17].

4 Numerical result
In this section, in order to demonstrate the effective-
ness, realization and convergence of the algorithm in
Theorem 16, we consider the following simple exam-
ple.

Let R2 be the two dimensional Euclidean
space with usual inner product and norm ∥x∥ =√
x21 + x22 (∀ x = (x1, x2)

⊤ ∈ R2). For convenience,
we consider the following simple example:

Example Let H = R2, C = [−1, 1] × [−1, 1],
Sn = I , tn = a ∈ (0, 1), n ∈ N . Fk ≡ 0,∀x, y ∈
C, rn,k = 1, k ∈ {1, 2, . . . ,M}. A = I, f(x) =

(14x1,−
1
4x2)

⊤, ∀x ∈ H, with contraction coefficient
ρ = 1

4 . Take αn = 1
n for every n ∈ N , µ = 1 and

γ = 1. Then {x(n)} is the sequence generated by

x(n+1) = ((1− 3

4n
)x

(n)
1 , (1− 5

4n
)x

(n)
2 )⊤. (21)

and {xn} → 0 = (0, 0)⊤ as n→ ∞, which solves the
variational inequality ⟨(f − I)0, p− 0⟩ ≤ 0, ∀p ∈ C.
By the definition of f and γ, it is easy to get h(x) =
1
8x

2
1 − 1

8x
2
2 + q, ∀x ∈ R2. Hence 0 is also the unique

solution of the minimization problem

min
x∈C

3

8
x21 +

5

8
x22 − q.

Proof: The proof is divided into three steps.

Step 1. Show that

TFk
rk,n

(x) = PCx, ∀x ∈ H, k ∈ {1, 2, . . . ,M}.

Indeed, since Fk(x, y) = 0, ∀x, y ∈ C, k ∈
{1, 2, . . . ,M}, from the definition of TFk

rk,n
in Lemma

11, we get

TFk
rk,n

(x) = {z ∈ C : ⟨y − z, z − x⟩ ≥ 0,∀ y ∈ C.}

By the equivalent property (4) of the nearest projec-
tion PC from H to C, the conclusion is obtained.

When we take x ∈ C, TFk
rk,n

x = PCx = Ix, k ∈
{1, 2, . . . ,M}. By the condition (iii) of Lemma 12,
we get

∩Mk=1EP (Fk) = C. (22)

Step 2. Show that Wn = I.
If Sn = I , tn = a ∈ (0, 1), n ∈ N , by the defi-

nition of W−mapping, we get Wn = I . The detailed
proof can be found in the reference [6].

Step 3. Show that x(n) → 0.
From (21), we get

∥x(n+1)∥ ≤ (1− 3

4n
)∥x(n)∥, ∀n ≥ 1.

Since Sn = I, n ∈ N, we obtain

∞∩
i=1

F (Si) = H.
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Combining with (22), we have

Ω = C = [−1, 1]× [−1, 1].

By Lemma 4, it is easy to get xn → 0. 0 is the unique
solution of the minimization problem

minx∈C
1
2⟨Ax, x⟩ − h(x)

= minx∈C
1
2∥x∥

2 − (18x
2
1 − 1

8x
2
2 + q)

= minx∈C
1
2(x

2
1 + x22)− (18x

2
1 − 1

8x
2
2 + q)

= minx∈C
3
8x

2
1 +

5
8x

2
2 − q.

Now we turn to realizing (21) for approximating
a fixed point of T . Take the initial guess x(1) =
(0.1,−0.2)⊤, x(1) = (0.01, 0.01)⊤ and x(1) =
(0.005, 0.005)⊤, respectively. All the numerical ex-
periment results are given in Table 1, Table 2 and Ta-
ble 3.

TABLE 1. x(1) = (0.1,−0.2)⊤(initial guess)

n(iterative number) x(n) errors(n)
8. (0.0057,0.0031). 6.5×10−3

23. (0.0026,0.0008). 2.7×10−3

81. (0.0010,0.0002). 1.0×10−3

295. (0.00005,0). 5.417×10−5

TABLE 2. x(1) = (0.01, 0.01)⊤(initial guess)

n(iterative number) x(n) errors(n)
3. (0.0012,-0.0005). 1.32×10−3

7. (0.0006,-0.00018). 6.58×10−4

22. (0.00027,-0.00004). 2.74×10−4

155. (0.000038,0). 3.88×10−5

TABLE 3. x(1) = (0.005, 0.005)⊤(initial guess)

n(iterative number) x(n) errors(n)
2. (0.00078,-0.00047). 9.12×10−4

5. (0.0004,-0.00014). 4.28×10−4

15. (0.00018,-0.00003). 6.91×10−5

105. (0.000026,0). 2.66×10−5

From the above numerical results, we can see that the
initial value is more close to the fixed point, the con-
vergence is more quickly.
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